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Abstract—Successful software is more and more rarely de-
veloped as a one-of-a-kind system. Instead, different system
variants are built from a common set of assets and customized
for catering to the different functionality or technology needs
of the distinct clients and users. The Software Product Line
Engineering (SPLE) paradigm has proven effective to cope with
the variability described for this scenario. However, evolving a
Software Product Line (SPL) from a family of systems is not a
simple endeavor. A crucial requirement is accurately capturing
the variability present in the family of systems and representing it
with Feature Models (FMs), the de facto standard for variability
modeling. Current research has focused on extracting FMs from
configuration scripts, propositional logic expressions or natural
language. In contrast, in this short paper we present an algorithm
that reverse engineers a basic feature model from the feature sets
which describe the features each system provides. We perform an
evaluation of our approach using several case studies and outline
the issues that still need to be addressed.
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I. INTRODUCTION

An emerging trend in commercial software development is
that successful products are more and more rarely developed
and sold as a one-of-a-kind systems. Instead, different system
variants are built from a common set of assets and customized
for catering to the different functionality or technology needs
of the distinct clients and users. Current market and technology
drivers demand a disciplined yet flexible approach to maximize
reuse and customization in all the software artifacts used
throughout the entire development cycle. The Software Prod-
uct Line Engineering (SPLE) paradigm has proven effective to
cope with this demand as attested by extensive research and
practice both in academia and industry [1]–[3]. The success of
this paradigm lies at the effective management and realization
of its variability – the capacity of software artifacts to vary
[4].

At the core of SPLE is a Software Product Line (SPL) [1],
[2], [5] which is a family of systems that share common
functionality but also have variations tailored for distinct
needs. In a SPL, each member product provides a different
combination of features – increments in program functionality
[6]. Each feature combination is called a feature set.

However, evolving a SPL from a family of systems is
not a simple endeavor. A crucial requirement is accurately

capturing the variability present in the family of systems and
representing it with Feature Models (FMs) [1], [7], the de facto
standard for variability modeling. Current research has focused
on extracting FMs from configuration scripts, propositional
logic expressions or natural language [8]–[10]. In contrast,
we present an algorithm that reverse engineers a basic feature
model from feature sets. We performed an evaluation using
fourty five publicly available feature models. For these models,
our algorithm produced a variability-correct feature model in
the order of miliseconds. Finally, we describe the issues that
need to be addressed.

II. BACKGROUND AND RUNNING EXAMPLE

In this section we provide the required background on
variability modeling with feature models and related basic
terminology.

A. Feature Models in a Nutshell

Feature models are the de facto standard to model the
common and variable features of SPL and their relationships
[1], [7]. Features are depicted as labeled boxes and are
connected with lines to other features with which they relate,
collectively forming a tree structure. A feature can be classified
as: mandatory if it is part of a program whenever its parent
feature is also part, and optional if it may or may not be part
of a program whenever its parent feature is part. Mandatory
features are denoted with filled circles while optional features
are denoted with empty circles both at the child end of the
feature relations denoted with lines. Features can be grouped
into: inclusive-or relation whereby one or more features of the
group can be selected, and exclusive-or relation where exactly
one feature can be selected. These relations are depicted as
filled arcs and empty arcs respectively.

Figure 1 shows the feature model of our running example,
a hypothetical SPL of Video On Demand systems. The root
feature of a SPL is always included in all programs, in this
case the root feature is VOD. Our SPL also has feature Play
which is mandatory, in this case it is included in all programs
because its parent feature VOD is always included. Feature
Record is optional, thus it may be present or not in our
product line members. Features Display and OS are also
mandatory. Features TV and Mobile constitute an exclusive-
or relation, meaning that our programs can have either one



Fig. 1: Video On Demand SPL Feature Model

of them but only one. Features Aerial and Cable form
an inclusive-or relation meaning that our systems can have
either of the features or both of them, and feature Smart
is mandatory with parent feature Mobile. Lastly, feature
Kernel is mandatory while feature Advanced is optional
with respect to their parent feature OS.

Besides the parent-child relations, features can also relate
across different branches of the feature model in the so called
cross-tree constraints [11]. The typical examples of this kind
of relations are: i) requires relation whereby if a feature A is
selected a feature B must also be selected, and ii) excludes
relation whereby if a feature A is selected then feature B
must not be selected. In a feature model, these latter relations
are depicted with doted single-arrow lines and doted double-
arrow lines respectively. Feature models without cross-tree
constraints are refered to as basic feature models.

B. Basic definitions

Definition 1: Feature List (FL) is the list of features in a
feature model.

Definition 2: Feature Set is a 2-tuple [sel,sel] where sel
and sel are respectively the set of selected and not-selected
features of a member product. Let FL be a feature list, thus
sel, sel ⊆ FL, sel ∩ sel = ∅, and sel ∪ sel = FL. The terms
p.sel and p.sel respectively refer to the set of selected and
not-selected features of product p (based on [11]).

Definition 3: Feature Set Table (FST) is a collection of
feature sets, such that for every product pi we have that pi.sel
∪ pi.sel=FL, where FL is a feature list of the corresponding
SPL.

Table I shows the 16 possible feature sets described in
our feature model in Figure 1. Throughout the paper we
use as column labels the shortest distinguishable prefix of
the feature names (e.g. Ad for Advanced). An example
of a feature set is product P2 =[{VOD, Play, Record,
Display, OS, TV, Kernel, Aerial}, {Mobile,
Smart, Advanced, Cable}].

Definition 4: Atomic set is a group of features that always
appears together in all products [11]. That is, features f1 and
f2 belong to an atomic set if for all products pi, f1 ∈pi.sel iff
f2 ∈pi.sel and f1 ∈pi.sel iff f2 ∈pi.sel. Let atSet be an atomic
set, we denote atSet as an arbitrarily chosen representative
feature of the atomic set, and ãtSet the remaining non-
representative features in atSet.

TABLE I: Feature Sets of VOD Software Product Line

P V P R D O T M S K Ad Ae C
P1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P4 ✓ ✓ ✓ ✓ ✓ ✓ ✓
P5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

P10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P12 ✓ ✓ ✓ ✓ ✓ ✓ ✓
P13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P16 ✓ ✓ ✓ ✓ ✓ ✓ ✓

For example, in the feature sets of Table I features VOD,
Display, Play, OS and Kernel form an atomic set
atSet. A representative can be atSet =Display and
ãtSet={VOD, Play, OS, Kernel}. Another example of
atomic set is formed by features Mobile and Smart, because
both appear together in the last four products of Table I.

Definition 5: Smallest Common Product. Let S be a set of
feature sets. Product pi is the smallest common product of S
iff pi.sel ⊆ pj .sel for every product pj ∈ S with pi ∕=pj .

III. REVERSE ENGINEERING ALGORITHM

In this section we sketch our reverse engineering algorithm.
We start by providing a description of the auxiliary functions
it relies on. Notice that we are assuming a pass-by-reference
argument semantics.
∙ splWideCommon(FST): computes from a Feature Set Ta-

ble the list of features that are common to all the members
of the product line, i.e. features f such that for all
products pi∈FST, and f∈pi.sel.

∙ selectRoot(FL): arbitrarily selects a feature from a Feature
List to be the root of the feature model.

∙ addMandRootFeatures(FL, root): creates a feature model
with root as the feature model root and as mandatory
children the features in FL.

∙ reduceFeature(FL, FST): removes the features in the fea-
ture list FL from all the feature sets in FST. Pictorically,
it removes from the table the columns of features FL.

∙ computeAtomicSets(FL, FST): computes the atomic sets
in the feature sets of FST involving features in feature
list FL.

∙ reduceAtomicSets(FST, atSets): eliminates the features in
the feature sets of the FST that are non-representative
elements of atomic sets in collection of atomic sets
atSets.

∙ dirChildren(FST, FL): selects features in feature list FL
that are direct children of the current parent1.

1No need to pass argument parent (input to Algorithm 2) because the
feature sets in FST can only contain children of this parent



∙ reduceProduct(FST): removes the repeated products in
the feature set table FST. Two products pi and pj are
repeated iff pi.sel=pj.sel and pi.sel=pj.sel.

∙ addXors(FST,FL, feature, atSets, FM): finds exclusive-or
relations on the feature set table FST that involve features
in feature list FL and have feature as the parent and
adds them to feature model FM.

∙ filterSmallestProducts(FST): divides features sets into dis-
joint subsets S1..Sk such that for every subset Si there
exists a smallest common product pi with pi∈Si and k is
minimal (i.e. smallest number of subsets), and eliminates
from the FST the products that are not the smallest
common ones of their corresponding subset.

∙ addOpts(FST, FL, feature, atSets, FM): finds optional
features on the feature set table FST that involve features
in feature list FL and have feature as the parent and
adds them to feature model FM.

∙ addOrs(FST, FL, feature, atSets, FM): finds inclusive-or
relations on the feature set table FST that involve features
in feature list FL and have feature as the parent and
adds them to feature model FM.

∙ descendants(FST, FL, feature): calculates the descendants
of feature in a FST that involve features in feature list FL.

Let us explain now how our algorithm works. For simplicity,
we have divided it in two parts. The first part, shown in
Algorithm 1, sets up root and the features that are mandatory
in all the products. The second part, shown in Algorithm 2,
builds the feature model, top to bottom, in a recursive manner.
For brevity, we omit details on the underlying data structures
used for instance to represent the feature model.

Consider now our running example of VOD system. First,
the features that are common to all products are identified
(Line 5). In our example, these features are VOD, Play,
Display, OS, and Kernel. A root is selected among this
features (Line 6). To simplify our explanation, let us choose
VOD also as root. Notice here that any other of these common
features could be equally selected as root, yielding a different
yet equivalent (i.e. same list of products [8]) feature model.
Next, the root of the feature model and its mandatory children
features are created (Line 9). Subsequently, the original feature
set table (FST) is trimmed first to eliminate the common
features already built into the feature model. A second reduc-
tion is made to remove the non-representative elements of the
atomics sets (Lines 15-19). In our example, the only atomic set
contains features Mobile and Smart. For simplicity, let us
remove Smart. The last part (Lines 22-24) calls the recursive
Algorithm 2 with the feature model so far constructed and the
trimmed FST. Figure 2 summarizes the main execution steps
of our running example. Figure 2(a) shows the FST and Figure
2(b) depicts the feature model constructed until this point. We
also use the shortest distinguishable prefix of the feature names
in the feature models and omit the surrounding boxes.

Algorithm 2 retrieves the relationships among the features
of the basic feature model layer by layer. The idea is to extract
at first all features which will be positioned directly beneath
the current parent, which is the root during the first recursion

Algorithm 1 Feature Model Extraction

1: Input: A Feature Sets Table (FST), and Feature List (FL).
2: Output: A basic feature model FM.
3:
4: {Computes SPL-wide common features and root}
5: splCF := splWideCommon(FST )
6: root := selectRoot(splCF )
7:
8: {Starts building FM from common features}
9: FM := addMandRootFeatures(splCF, root)

10:
11: {Prunes FST by removing common features}
12: FST ′ := reduceFeature(splCF, FST )
13:
14: {Computes atomic sets}
15: FL′ := FL− splCF
16: atSets := computeAtomicSets(FL′, FST ′)
17:
18: {Prunes FST by removing atomic sets}
19: FST ′′ := reduceAtomicSets(FST ′, atSets)
20:
21: {Build Feature Model}
22: FL′′ = FL′ − ãtSets
23: buildFM(FST ′′, FL′′, atSets, root, FM)
24: return FM

step. Subsequently the relationships among these features are
computed. The last step of Algorithm 2 is to make a recursive
call, for all those direct children which are non-leaf features.
Before we proceed, please notice that: i) Line 10 copy makes
a fresh new copy of the direct children list, and ii) Line 27 a
call to reduceFeature has its first argument indicated in
brackets, this is a special case of this method that also deletes
those products of FST that do not have child as feature.

During the first recursion the computation of the di-
rect children (Line 4) delivers: Record, TV, Mobile and
Advanced. Next, a copy of the given feature set table is
produced which only contains direct children and no duplicate
entries (Line 7). Figure 2(c) shows the outcome of this
computation. Then the xor relations among the direct children
are calculated (Line 11). Notice that TV and Mobile are
inserted into the basic feature model FM during this step.
As Mobile is one of the representatives of the atomic sets
the non-representative feature Smart will be inserted as child
mandatory of the feature Mobile, see Figure 2(d).

Line 12 again produces a reduced copy of the current
feature sets table. FST’’ contains only four different prod-
ucts, namely the different combinations of Record and
Advanced which appear in Figure 2(e). Then the computa-
tion of the smallest common products is performed (Line 15).
In our example, there is only one smallest common product
psp=[{},{Record, Advanced}].

It is worth noticing that smallest common products are
computed because all direct children which are not inserted



Fig. 2: Algorithm Main Execution Steps.

yet and do not appear in one of the smallest common products
have to be optional features. In this example, the remaining
direct children Record and Advanced are inserted into FM
as optional features (Line 18), see Figure 2(f). Line 21 will not
insert anything into FM, because there are no direct children
left to process.

At last the recursive calls (Line 24-30) are made. In this
example, only TV has descendants namely Aerial and
Cable. The feature set table FST’ (Line 27), with which
the function is called recursively, contains three products as
shown in Figure 2(g).

During the second call of Algorithm 2 the direct chil-
dren are Cable and Aerial (Line 4). There are no
xor relations inserted (Line 11) and the smallest com-
mon products are psp1=[{Cable},{Aerial}] and
psp2=[{Aerial},{Cable}] (Line 15). There are no
optional features inserted (Line 18). Finally the two features
are inserted in an or relation (Line 21), Figure 2(h).

This example also illustrates that even though the feature
model we obtained in Figure 2(h) is not identical to our
original in Figure 1, on closer inspection, both models are
equivalent in the sense that they describe the same collection
of feature sets (i.e. Table I).

IV. EVALUATION

We performed an evaluation of the execution time of our
algorithm using 45 feature models publicly available from the
SPLOT website [12]. These feature models range from 9 to
67 features with a median of 17 features. Using the FAMA
tool suite [13], we computed the list of feature sets for each

Fig. 3: Algorithm Execution Times

feature model (Operation Products in FAMA as defined in
[11]) and use it as input to our algorithm. The number of
feature sets in these models ranges from 1 to 6400 with a
median of 135 feature sets. We executed our examples on a
MS Windows XP system, running at 1.5Ghz, and with RAM
of 2GB. The results are summarized in Figure 3. It can be
seen that even for the largest model the performance falls
within an acceptable range, about 1 second. For correctness,
we performed a straightforward test. We computed the list
of products of our reversed-engineered feature models, again
using the FAMA tool suite, and compared them with the
list of products originally used as input. In all cases, our
algorithm produced an equivalent (i.e. same feature set list)
feature model.



Algorithm 2 Build Feature Model buildFM

1: Input: A Feature Sets Table (FST), a Feature List (FL),
atomic sets (aSets), a parent feature (parent), and a basic
feature model (FM).

2: Output: The modified basic feature model FM.
3: {Computes direct children features}
4: directCℎildren := dirCℎildren(FST, FL)
5:
6: {Removes columns not in dirChildren}
7: FST ′ := reduceProduct(

reduceFeature(FL−directCℎildren, FST ))
8:
9: {Adds Xor relations}

10: directCℎildren′ := copy(directCℎildren)
11: addXors(FST ′, directCℎildren, parent, atSets, FM)
12: FST ′′ := reduceProduct(reduceFeature(

directCℎildren′ − directCℎildren, FST ′))
13:
14: {Retain smallest products}
15: FST ′′′ := filterSmallestProduct(FST ′′)
16:
17: {Adds optional relations}
18: addOpts(FST ′′′, directCℎildren, parent, atSets, FM)
19:
20: {Adds or relations}
21: addOrs(FST ′′′, directCℎildren, parent, atSets, FM)
22:
23: {Recursive feature model building}
24: for cℎild in directCℎildren′ do
25: FL′ := descendants(FST, FL, cℎild)
26: if ∣FL′∣> 0 then
27: FST ′ := reduceProduct(reduceFeature(

< FL− FL′, cℎild >, FST ))
28: buildFM(FST’,FL’, atSets, child, FM)
29: end if
30: end for

V. RELATED WORK

For sake of brevity, we describe only the work that most
closely relate to ours. Czarnecki and Wasowski propose an
algorithm to transform back and forth feature models and
propositional logic formulas that relies on using Binary De-
cision Diagrams [8]. She et al. extend this work by taking
into account not only the feature configuration dependencies
but also the ontological (domain) knowledge of the feature
descriptions [9]. A similar approach is taken by Weston et
al. that uses natural language processing techniques to extract
feature models from requirements documents [10].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an algorithm to reverse engineer
features models from feature sets, and performed a prelimi-
nary evaluation to assess its performance. Encouraged by our
promising results, there are several issues that still need to be

addressed. First and foremost, a thorough formal analysis of
our algorithm. We are currently working on providing a formal
footing to our algorithm along the lines of Czarnecki et al.
[8]. A formal representation, would allow us to better assess
the correctness of the derived feature models. We believe that
works like Thüm et al. [14] and Batory’s [15] could prove
useful for this assessment.

Our current algorithm focuses on basic feature models,
those that do not have cross-tree constraints. We are currently
investigating how to integrate arbitrary cross-tree constraints.
We have seen that a collection of feature sets can yield
more than one equivalent feature model. This fact poses
the question of what is role of the human guidance in this
reverse engineering process. Like others ( [9], [10]), we believe
that reverse engineering feature models requires an iterative
process that is lead by domain expertise (human guidance)
informed with a variability analysis such as our algorithm.
We plan to further explore this question with an actual case
study.
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